class: center, middle, inverse, title-slide # Instrumentos de Análisis Urbanos II ## Maestría en Economía Urbana ### ### Universidad Torcuato Di Tella ### 15/08/2023 --- layout: true <div class="my-footer"><span>Instrumentos de Análisis Urbanos II - <a href="https://tuqmano.github.io/geo_utdt/">https://tuqmano.github.io/geo_utdt/</a></span></div> --- class: inverse, center, middle # Intro DataViz --- class: center # Elegir el gráfico correcto para nuestros datos <img src="sesion8_files/figure-html/unnamed-chunk-2-1.png" width="504" /> --- class: center ## Elegir el gráfico correcto para nuestros datos <img src="sesion8_files/figure-html/unnamed-chunk-3-1.png" width="50%" /> #### FUENTE: **https://www.data-to-viz.com/caveat/pie.html#** --- ## _Único caso útil para un gráfico de tortas_ <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/piramide.png" width="80%" /> -- ## Tampoco para tanto ### _A case for pie charts_ - [Fundamentals of Data Visualization, Claus Wilke](https://clauswilke.com/dataviz/visualizing-proportions.html#a-case-for-pie-charts) --- class: inverse, center, middle ## El problema de los mapas coropléticos --- class:inverse ### #Election2020 #### > **"_Trump loves this 2016 election map because it suggests the majority of the country supports him (...)_"** **([NYT](https://www.nytimes.com/interactive/2020/10/30/opinion/election-results-maps.html))** <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/sesiones/figs/nyt.png" width="100%" /> --- # El problema de los mapas coropléticos <img src="https://github.com/TuQmano/votemapARG/blob/main/output/001.png?raw=true" width="90%" /> --- ## ARGENTINA 2015 ([repo](https://github.com/TuQmano/votemapARG/)) <img src="https://github.com/TuQmano/votemapARG/raw/main/animacion.gif" width="90%" /> --- class: inverse, center, middle # Alternativas de visualización _geo_ --- class: center, middle # Mapa Coroplético <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/choroplet.png" width="80%" /> --- class: center, middle # Cartogramas <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/cartogramas.png" width="80%" /> --- class: center, middle # _Tilemaps_ <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/tilemap.png" width="80%" /> --- class: center, middle # _Tilemaps_ <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> Código: HEX [ARGENTINA](https://github.com/TuQmano/arg_bins_map) <img src="https://github.com/TuQmano/arg_bins_map/raw/master/provs.gif" width="60%" /> --- class: center, middle # _Faceted tilemaps_ <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/faceted_tilemap.png" width="80%" /> --- class: center, middle # Tilegrams <img src="https://raw.githubusercontent.com/TuQmano/geo_utdt2022/main/fig/tilegrams.png" width="80%" /> --- class: inverse , middle # Limitaciones varias * Visualizar una variable / valor por unidad geográfica -- * Solo hace uso del color para codificación visual (dificultad para calcular diferencias) -- * Sesgo a favor de grandes unidades geográficas --- background-image: url(https://hafen.github.io/geofacet/reference/figures/logo.png) background-position: 95% 5% background-size: 10% class: inverse # Grillas como (si fueran) mapas **[<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg>`{geofacet}`](https://ryanhafen.com/blog/geofacet/)** <img src="sesion8_files/figure-html/unnamed-chunk-14-1.png" width="100%" /> --- class: inverse ## Ventajas de `{geofacet}` [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> _Voto Popular_ vs _Colegio Electoral_](https://github.com/TuQmano/popular_vote) <img src="https://raw.githubusercontent.com/TuQmano/popular_vote/master/plots/turnount_ts.png" width="75%" /> * se pueden graficar múltiples variables para cada unidad geográfica -- * se pueden aplicar otros esquemas de codificación visual más allá del color -- * cada unidad geográfica tiene asignada la misma proporción espacial --- background-image: url(https://hafen.github.io/geofacet/reference/figures/logo.png) background-position: 95% 5% background-size: 10% # `geofacet::grid_design()` ### <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> [Grillas colaborativas](https://github.com/hafen/geofacet/issues/102) ```r library(geofacet) grid_preview(argentina_grid2) ``` <img src="sesion8_files/figure-html/unnamed-chunk-16-1.png" width="35%" /> --- background-image: url(https://hafen.github.io/geofacet/reference/figures/logo.png) background-position: 95% 5% background-size: 10% class: inverse, middle ## **EJERCICIO**: ### Comunas de C.A.B.A + <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> [App](https://hafen.github.io/grid-designer/#data=) + <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> [DATA](https://gist.githubusercontent.com/TuQmano/2fb70e11c6500176427bb3b60604b79d/raw/ebe2889269d403dd05ab1db9e6ad624fa02a6e63/comunas.csv) --- background-image: url(https://github.com/electorArg/geofaceteAR/blob/master/hex/ggplot2.png?raw=true) background-position: 95% 5% background-size: 10% # Las grillas de Argentina .pull-left[ ### **LatinR 2018** - [Abstract](https://github.com/TuQmano/geofacet_ARG/blob/master/.LatinR/Geofaceting_Argentina_RuizNicolini.pdf) #### [📊 Slides](https://www.researchgate.net/publication/327382101_Geofaceting_Argentina_LatinR_2018) #### [📦 {geofaceteAR}](https://electorarg.github.io/geofaceteAR/) #### [⌨️ blogpost](https://www.tuqmano.com/2020/05/22/empaquetar/) ] .pull-right[ <img src="sesion8_files/figure-html/unnamed-chunk-17-1.png" width="504" style="display: block; margin: auto auto auto 0;" /> ] --- background-image: url(https://github.com/PoliticaArgentina/geoAr/raw/main/man/figures/logo.png) background-position: 95% 2% background-size: 15% ## **_geofaceteAr_** en ## `{geoAr}` #### Para descargar grillas: `get_grid()` ```r (tucuman <- geoAr::get_grid(district = "TUCUMAN")) ## name_provincia name row col code ## 1 TUCUMAN BURRUYACU 1 4 013 ## 2 TUCUMAN CAPITAL 2 4 001 ## 3 TUCUMAN CHICLIGASTA 4 2 005 ## 4 TUCUMAN CRUZ ALTA 2 5 012 ## 5 TUCUMAN FAMAILLA 3 3 003 ## 6 TUCUMAN GRANEROS 5 4 009 ## 7 TUCUMAN JUAN B. ALBERDI 5 3 007 ## 8 TUCUMAN LA COCHA 6 3 008 ## 9 TUCUMAN LEALES 3 5 011 ## 10 TUCUMAN LULES 3 4 002 ## 11 TUCUMAN MONTEROS 3 2 004 ## 12 TUCUMAN RIO CHICO 4 3 006 ## 13 TUCUMAN SIMOCA 4 4 010 ## 14 TUCUMAN TAFI DEL VALLE 2 1 017 ## 15 TUCUMAN TAFI VIEJO 2 2 016 ## 16 TUCUMAN TRANCAS 1 3 014 ## 17 TUCUMAN YERBA BUENA 2 3 015 ``` --- background-image: url(https://github.com/PoliticaArgentina/geoAr/raw/main/man/figures/logo.png) background-position: 95% 2% background-size: 15% ## **_geofaceteAr_** en ## `{geoAr}` ```r geofacet::grid_preview(tucuman) ``` <img src="sesion8_files/figure-html/unnamed-chunk-19-1.png" width="504" /> --- background-image: url(https://github.com/PoliticaArgentina/geoAr/raw/main/man/figures/logo.png) background-position: 95% 2% background-size: 15% ## **_geofaceteAr_** en ## `{geoAr}` #### Para recodificar distritos: `recode_grid()` <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> Ejemplo [ARGENTINA](https://electorarg.github.io/geofaceteAR/articles/recodificacion.html) .pull-left[ ```r tucuman %>% geofacet::grid_preview() ``` <img src="sesion8_files/figure-html/unnamed-chunk-20-1.png" width="504" height="70%" /> ] -- .pull-right[ ```r tucuman %>% * recode_grid(type = "indec") %>% geofacet::grid_preview() ``` <img src="sesion8_files/figure-html/unnamed-chunk-21-1.png" width="504" height="70%" /> ] --- class: middle, center, inverse ## Data Viz (II) ### Las muchas capas de `ggplot2 +` extensiones --- class: middle background-image: url(https://user-images.githubusercontent.com/520851/34887433-ce1d130e-f7c6-11e7-83fc-d60ad4fae6bd.gif) background-position: 95% 5% background-size: 10% ### GEOM integrado .pull-left[ ```r library(tidyverse) p <- geoAr::get_geo(geo = "TUCUMAN") %>% ggplot2::ggplot() + # SETTING color * ggplot2::geom_sf(color = "blue") p ``` <img src="sesion8_files/figure-html/unnamed-chunk-22-1.png" width="504" /> ] .pull-right[ <img src="https://raw.githubusercontent.com/rstudio/hex-stickers/main/PNG/ggplot2.png" width="20%" /> ] --- background-image: url(https://user-images.githubusercontent.com/520851/34887433-ce1d130e-f7c6-11e7-83fc-d60ad4fae6bd.gif) background-position: 95% 5% background-size: 10% ## `aes()` **Estéticas como capas** * Extraemos valores de variable desde el objeto `ggplot2` ```r p + * aes(fill = p$data$coddepto_censo) ``` <img src="sesion8_files/figure-html/unnamed-chunk-24-1.png" width="504" /> --- class: inverse, center, middle # Galería de extensiones a `ggplot2` <https://exts.ggplot2.tidyverse.org/gallery/> --- background-image: url(https://patchwork.data-imaginist.com/reference/figures/logo.png) background-position: 95% 5% background-size: 10% # Composición de gráficos [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> `{patchwork}`](https://patchwork.data-imaginist.com/) ```r library(ggplot2) *library(patchwork) p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp)) p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear)) *p1 + p2 ``` <img src="sesion8_files/figure-html/unnamed-chunk-25-1.png" width="50%" /> --- background-image: url(https://patchwork.data-imaginist.com/reference/figures/logo.png) background-position: 95% 5% background-size: 10% # Composición de gráficos <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> [`{patchwork}`](https://patchwork.data-imaginist.com/) ```r p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec)) p4 <- ggplot(mtcars) + geom_bar(aes(carb)) *(p1 | p2 | p3) / * p4 ``` <img src="sesion8_files/figure-html/unnamed-chunk-26-1.png" width="50%" /> --- background-image: url(https://patchwork.data-imaginist.com/reference/figures/logo.png) background-position: 95% 5% background-size: 10% # Composición de gráficos [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> `{patchwork}`](https://patchwork.data-imaginist.com/) ```r mapa <- p + ggplot2::geom_sf_label(data = p$data %>% geoAr::add_geo_codes(), aes(label = nomdepto_censo)) mapa ``` <img src="sesion8_files/figure-html/objetos-1.png" width="50%" /> --- background-image: url(https://patchwork.data-imaginist.com/reference/figures/logo.png) background-position: 95% 5% background-size: 10% # Composición de gráficos [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> `{patchwork}`](https://patchwork.data-imaginist.com/) ```r library(geoAr) tucgrid <- geoAr::get_grid("TUCUMAN") %>% geofacet::grid_preview(label = "name") ``` <img src="sesion8_files/figure-html/objetos geoar -1.png" width="50%" /> ```r tucgrid ``` <img src="sesion8_files/figure-html/objetos geoar -2.png" width="50%" /> --- background-image: url(https://patchwork.data-imaginist.com/reference/figures/logo.png) background-position: 95% 45% background-size: 10% # Composición de gráficos ```r library(patchwork) mapa + tucgrid ``` <img src="sesion8_files/figure-html/combine-1.png" width="50%" /> --- background-image: url(https://wilkelab.org/cowplot/reference/figures/logo.png) background-position: 95% 3% background-size: 10% # Composición de gráficos [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> `{cowplot}`](https://wilkelab.org/cowplot/index.html) ```r library(cowplot) logo_file <- "https://github.com/electorArg/polAr/blob/master/hex/hex-polAr.png?raw=true" ggdraw(cow_plot) + draw_label(label = "HECHO CON", color = "blue", size = 40, angle = 45 , alpha = .5) + draw_image(logo_file, x = 1, y = 1.1, hjust = 1, vjust = 1, width = 0.15) ``` <img src="sesion8_files/figure-html/unnamed-chunk-28-1.png" width="50%" /> --- background-image: url(https://dreamrs.github.io/esquisse/reference/figures/esquisse.gif) background-size: 60% # [<svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"></path></svg> `{esquisse}`](https://dreamrs.github.io/esquisse/) --- class: inverse ## <svg viewBox="0 0 448 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#fdbd15;" xmlns="http://www.w3.org/2000/svg"> <path d="M448 360V24c0-13.3-10.7-24-24-24H96C43 0 0 43 0 96v320c0 53 43 96 96 96h328c13.3 0 24-10.7 24-24v-16c0-7.5-3.5-14.3-8.9-18.7-4.2-15.4-4.2-59.3 0-74.7 5.4-4.3 8.9-11.1 8.9-18.6zM128 134c0-3.3 2.7-6 6-6h212c3.3 0 6 2.7 6 6v20c0 3.3-2.7 6-6 6H134c-3.3 0-6-2.7-6-6v-20zm0 64c0-3.3 2.7-6 6-6h212c3.3 0 6 2.7 6 6v20c0 3.3-2.7 6-6 6H134c-3.3 0-6-2.7-6-6v-20zm253.4 250H96c-17.7 0-32-14.3-32-32 0-17.6 14.4-32 32-32h285.4c-1.9 17.1-1.9 46.9 0 64z"></path></svg> Referencias ### Themes * `{ggthemes}` <https://jrnold.github.io/ggthemes/index.html> * `{hrbthemes}` <https://cinc.rud.is/web/packages/hrbrthemes/> -- ### Fonts * `{extrafont}` <https://github.com/wch/extrafont> * `{ggtext}` <https://wilkelab.org/ggtext/> -- ### `+` * `{plotly}` <https://plotly-r.com/> * **The `R` Graph Gallery** <https://www.r-graph-gallery.com/>